IN VITRO ANTIMICROBIAL ACTIVITY OF TANKAN

Tarak R. Adhvaryu¹, Kalpana S. Patel ², Virendra K. Kori ³, Rajagopala S.⁴, Manjusha R.⁵

¹Kashyap Child Care Centre, Bardoli, Gujarat, India.
²Professor & head, department of Kaumarbhritya, Institute for Post Graduate Teaching and Research in Ayurveda, Gujarat Ayurved University, Jamnagar, Gujarat, India.
³Assistant professor, department of Kaumarbhritya, Institute for Post Graduate Teaching and Research in Ayurveda, Gujarat Ayurved University, Jamnagar, Gujarat, India.
⁴Assistant professor, department of Kaumarbhritya, Institute for Post Graduate Teaching and Research in Ayurveda, Gujarat Ayurved University, Jamnagar, Gujarat, India.
⁵Professor, department of Shalakya, Institute for Post Graduate Teaching and Research in Ayurveda, Gujarat Ayurved University, Jamnagar, Gujarat, India.

*Author for Correspondence: Dr Tarak Rajeshkumar Adhvaryu,
Kashyap Child Care Centre, Shivam Clinic, Luhar Falia,Bardoli, Dist. Surat, Gujarat, India.

ABSTRACT

Aim of the present antimicrobial activity study was to evaluate the antimicrobial activity of the drug Tankan. Tankan (Borax) is a salt of tetra Boric acid, an important compound of Boron, which is also known as sodium biborate. Tankan is used in Ayurveda since very long time. The antimicrobial activity was carried out by using the Agar disc diffusion method. The antibacterial and antifungal activity of the tested drug was carried out in different concentrations of the drugs (5, 25, 50, 100, 250µg/ml). The tested bacterial strains were Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus pyogenes. The tested fungal strains were Candida albicans, Aspergillus niger and Aspergillus clavatus. The test drug was effective on the tested microorganisms.

KEY WORDS: Antibacterial activity, antifungal activity, Tankan.

INTRODUCTION

A microorganism is a microscopic living organism, which may be single celled or multicellular. Microorganisms are very diverse and include all the bacteria and archaea and almost all the protozoa. They also include some fungi, algae, and certain animals, such as rotifers. Many macroscopic animals and plants have microscopic juvenile stages. Some microbiologists also classify viruses (and viroids) as microorganisms, but others consider these as nonliving.[1,2]

There are two sets of microbial population. One group is beneficial to human beings and other group is harmful to human being. The beneficial group do the wonders; on the other hand harmful ones are often fatal. Control of harmful microbial population is necessary to prevent transmission of disease, infection, decomposition, contamination and spoilage caused by them. In Ayurveda infectious diseases come under the Agantuka Vyadhi or Aupsargika Vyadhi (External Diseases). Jwara (fever), Kushtha (Skin disorders), Shosha (tuberculosis), Abhishyanda (conjunctivitis), etc. diseases are the example of Aupsargika Vyadhi.[3] Tankan is used in Ayurveda since very long time. Tankan (Borax) is a salt of tetra Boric acid, an important compound of Boron, which is also known as sodium biborate.[4] In the native state it exists as an impure saline incrustation of a dirty-white colour. It exists as crystalline tough masses or in the form of translucent irregular masses, and when exposed to air it becomes opaque.[5] It has a wide range of therapeutic applications, including diseases like Vrana (ulcers), Shvasa (asthma), Kasa (cough), etc.[6]

The present study was aimed to evaluate the antimicrobial efficacy of Tankan against pathogenic microorganisms.

MATERIALS AND METHODS

Preparation of formulations

Tankan was obtained from pharmacy, G.A.U., Jamnagar.

Evaluation Techniques

Dimethyl sulfoxide (DMSO) was used as diluents / vehicle to get desired concentration of drug to test upon standard bacterial strains. Agar cup method is used for the evaluation of antimicrobial property of the tested drug.
Test microorganisms and growth media
In the present study following microorganisms were used: Bacterial strains were Escherichia coli (MTCC 443), Pseudomonas aeruginosa (MTCC 424), Staphylococcus aureus (MTCC 96) and Streptococcus pyogenes (MTCC 442) and fungal strains were Candida albicans (MTCC 227), Aspergillus niger (MTCC 282) and Aspergillus clavatus (MTCC 1323). These bacterial and fungal strains were obtained from Institute of Microbial Technology, Chandigarh.

The bacterial and fungal stock cultures were incubated for 24h at 37°C on Nutrient Agar and Potato Dextrose Agar medium (Microcare laboratory, Surat, Gujarat, India) respectively following refrigeration storage at 4°C. The bacterial strains were grown in Mueller-Hinton agar (MHA) plates at 37°C (The bacteria were grown in the nutrient broth at 37°C and maintained on nutrient agar slants at 4°C) where as the yeasts and molds were grown in sabouraud dextrose agar (SDA) and potato dextrose agar (PDA) media, respectively, at 28°C. The stock cultures were maintained at 4°C.

Antimicrobial activity
Determination of zone of inhibition (ZOI) method
In vitro antimicrobial activity testing was carried out by using Agar cup method. Each purified extracts were dissolved in Dimethyl Sulfoxide (DMSO), sterilized by filtration using sintered glass filter and stored at 4°C. For the determination of ZOI, pure Gram positive, Gram negative and fungal strains antibiotics were taken as a standard for comparison of the results. All the extracts were screened for their antibacterial and antifungal activities against the E. coli, P. aeruginosa, S. aureus, S. pyogenes and the fungi C. albicans, A. niger and A. clavatus. The sets of five dilutions (5, 25, 50, 100 and 250 µg/ml) of Takan and standard drugs were prepared in double distilled water using nutrient agar tubes. Muller Hinton sterile agar plates were seeded with indicator bacterial strains (10⁶ cfu) and allowed to stay at 37°C for 3 h. Control experiments were carried out under similar condition by using Ampicillin, Chloramphenicol, Ciprofloxacine and Norfloxacine for antibacterial activity and Nystatin and Griseofulvin for antifungal activity as standard drugs. The zones of growth inhibition around the disks were measured after 18 to 24 h of incubation at 37°C for bacteria and 48 to 96 h for fungi at 28°C, respectively. The sensitivity of the microorganism species plant extracts were determined by measuring the sizes of inhibitory zones (including the diameter of disk) on the agar surface around the disks, and values <8 mm were considered as not active against microorganisms. [7,8,9,10]

RESULTS AND DISCUSSION
Antibacterial activity of test drugs (Zone of Inhibition)
The result of antimicrobial activity of Takan in different concentrations (5, 25, 50, 100 and 250 µg/ml) is presented in Table I-III. This result is compared with the antibacterial and antifungal activity of the standard drugs presented in table I, II and III. The results revealed that tested drug showed antimicrobial activity against tested organisms. It was observed that the antimicrobial activity of the drug increased when the concentration is more.

The zone of inhibition measured ranged from 12-20 mm for all bacterial strains and ranged from 13-21mm for fungal strains. Test drug did not affect the pathogens at 5 µg/ml concentration where as all the standard drugs showed effect at this level. The effect of Takan showed at concentration of (25, 50, 100, 250 µg/ml) were (14, 15, 17 and 20 mm) against E. coli MTCC 443, (12, 14, 17 and 20 mm) against P. aeruginosa MTCC 424, (12, 15, 17 and 20 mm) against S. aureus MTCC 96, (12, 14, 17 and 19 MM) against S. pyogenes MTCC 442, (14, 15, 19 AND 21 mm) against C. albicans MTCC 227, (13, 16, 17 and 20 mm) against A. niger MTCC 282, (14, 16, 17 and 20 mm) against A. clavatus MTCC 1323. [Figure I to 6].

The results showed that all samples were effective against all the tested organisms.

CONCLUSION
Takan (Borax) is a salt of tetra Boric acid, an important compound of Boron. It is used in Ayurveda since very long time. The results of present study showed that Takan was effective against bacterial strains E. coli, P. aeruginosa, S. aureus, S. pyogenes and fungal strains C. albicans, A. niger and A. clavatus.

Table I: Antibacterial activity of test drug and standard drugs

<table>
<thead>
<tr>
<th>Test Organism</th>
<th>Takan</th>
<th>Standard drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>E.Coli MTCC 443</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>P. aeruginosa MTCC 424</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>S. aureus MTCC 96</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>S. pyogenes MTCC 442</td>
<td>-</td>
<td>12</td>
</tr>
</tbody>
</table>

Table II: Antibacterial activity of test drug and standard drugs

<table>
<thead>
<tr>
<th>Test Organism</th>
<th>Takan</th>
<th>Standard drugs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

www.ejbps.com
Table III: Antifungal activity of test drug and standard drugs

<table>
<thead>
<tr>
<th>Test Organism</th>
<th>Tankan</th>
<th>Standard drugs</th>
<th>Nystatin</th>
<th>Griseofulvin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 25 50 100 250</td>
</tr>
<tr>
<td>C. albicans MTCC 227</td>
<td>- 14 15 19 21</td>
<td>18 21 24 25 26</td>
<td>18 21 22 22 24</td>
<td>-</td>
</tr>
<tr>
<td>A.clavatus MTCC 1323</td>
<td>- 14 16 17 20</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A.niger MTCC 282</td>
<td>- 13 16 17 20</td>
<td>18 19 24 29 29</td>
<td>19 23 25 25 28</td>
<td>-</td>
</tr>
</tbody>
</table>

Figure I: Effect of test drug and standard drugs against *E. coli*

Figure II: Effect of test drug and standard drugs against *P. aeruginosa*

Figure III: Effect of test drug and standard drugs against *S. aureus*

Figure IV: Effect of test drug and standard drugs against *S. pyogenes*
Figure V: Effect of test drug and standard drugs against *C. albicans*

Figure VI: Effect of test drug and standard drugs against *A. niger*

REFERENCE

8. Indian journal of chemistry, March 2007; 46550-55