EVALUATE AND COMPARE THE EFFECT OF DENTURE CLEANSERS ON TENSILE BOND STRENGTH AND HARDNESS OF SILICONE BASED RESILIENT LINERS - AN IN VITRO STUDY

1Dr. Prasad K. B* and 2Dr. Kurien Varghese

1Surya Dental Clinic and Implant Centre, Moospet Road, Opp: Jubilee Mission Hospital Gate No 4 Thrissur East, Kerala 680005.
2Department of Prosthodontics, Azeezia College of Dental Science And Research, Kollam.

* Corresponding Author: Dr. Prasad K.B
Surya Dental Clinic and Implant Centre, Moospet Road, Opp: Jubilee Mission Hospital Gate No 4 Thrissur East, Kerala 680005.

ABSTRACT
Objectives: The objectives of this study is to determine the effect of two popular denture cleansers (Clinsodent® & Secure®) on tensile bond strength and hardness of two commonly used silicone based resilient liner (Ufi gel P™ & GC reline soft™), during the period of 6 months storage duration. Methodology: For tensile bond strength testing 120 rectangular specimens of both Ufi gel P™ and GC reline soft™ were fabricated with standardized brass flask. Two acrylic blocks were joint with the respective silicone liner material of thickness 3mm x 10mm x 10mm. For hardness 120 cylindrical specimens (20mm x 12mm) of both liner were fabricated from standardized brass flask. All the specimens were stored in water (control), Clinsodont, Secure denture cleansers for a period of 24 hours and 180 days. Evaluation of tensile bond strength done by Universal testing machine and hardness by Shore A durometer after first day and 180 days. All the data were statistically analyzed using paired student t test, one way analysis of variance (ANOVA), Post Hoc test. Results: There is a significant reduction in tensile bond strength and increase in Shore A hardness of Ufi gel P™ and GC reline Soft specimen stored in Secure denture cleanser for a period of 180 days compared to first day. There was insignificant effect of clinsodont and water on tensile bond strength and hardness of the liner. Conclusion: Soft liners stored in cleansing solutions and water did not show much significant variation in mechanical property. Hence it is advisable to use cleansers for better anti microbial property. Ufi gel P™ was proved to be a better material than GC reline soft™ liner with minimal variation.

KEYWORDS: Silicone liner, denture cleansers, tensile bond strength, hardness.

INTRODUCTION
Soft resilient denture liners have a key role in modern removable prosthodontics because of their capability of preventing and restoring health to inflamed and distorted mucosa. They act as a cushion for the denture bearing mucosa leads to absorption and redistribution of forces transmitted to the stress bearing areas of the edentulous ridges. Kawano et al evaluated the cushioning effect of soft denture liners, indicating that a soft liner reduced the impact force during function.[1]

Soft lining materials is defined as soft compliant, viscoelastic materials which may be applied to the fitting surface of a denture for the purpose of reducing and more evenly distributing occlusal loadings of the underlying mucosal tissue.[2] One of the first synthetic resins used as a resilient liner, a plasticized polyvinyl resin, was developed in 1945. Silicone based materials were introduced in 1958.[3] Resilient liners can be divided into 2 groups. Silicone based & acrylic resin based. They are available in two forms; Self cure / Room temperature vulcanizing (RTV) silicones and Heat temperature vulcanizing (HTV) silicones. The optimum thickness has been reported as approximately 2.5 to 3 mm which is needed to provide good shock absorption.[4] Acrylic resin based resilient liner materials generally consist of polymers along with a liquid containing methacrylate monomer and plasticizers (ethyl alcohol and/or phthalate). Silicone based resilient liner materials are similar in composition to silicone type impression materials, as they are dimethylsiloxane polymers. Polydimethyl siloxane is a viscous liquid that can be cross linked to form an elastic rubber. One of the most serious problems with these materials is loss of resiliency and bond failure between the resilient denture liner and denture base. Bond failure creates a potential area for growth, plaque and calculus formation.[5] All other favorable properties of a denture liner will be non significant in the absence of a good bond to the denture base material. There are two types of cleansing...
methods, mechanical plaque control and chemical plaque control Brushing is probably not advisable because it can damage the resilient lining. The immersion with chemical agents is primarily the preferred method for geriatric patients and for patients with poor motor nerve capabilities. Although chemical cleansing has been considered an effective method to prevent C. albicans invasion and denture biofilm formation.[5] The chemical solutions used for denture cleansing can be divided based on their chemical components such as alkaline peroxide solutions; hypochlorite solutions, acidic solutions, disinfectants, and enzymatic solution that are more effective in precluding microbial invasion and plaque accumulation. This study was conducted to evaluate changes in tensile bond strength and hardness of two resilient liner when immersed in two denture cleaners on first day and 180 days.

MATERIALS AND METHODS
1) Ufi Gel P™ (Auto polymerized silicone liners ,VOCO, Germany). FIG 1
2) GC Reline™ soft (Auto polymerized silicone liners, GC Dental Products corp., Japan). FIG 2
3) DPT™ Heat cure (Heat polymerizing poly methyl meth acrylate acrylic resin and Monomer Dental Products of India, Ltd).
4) Clinsovent®dentine cleanser tablet (Alkaline peroxide ICPA). FIG 3
5) Secure® denture cleanser tablet (Alkaline Peroxide, SECURE).FIG 3
6) Water (control) and Rectangular containers.
7) Bioline® Petroleum jelly (Biopharm Laboratories).

ARMAMENTARIUM
1) Standardized 3 piece brass mould (83mm x 10mm x 10mm with a brass spacer of 3mm) for fabrication of tensile bond strength specimen, FIG 4
2) Standardized 3 piece brass mould (20mm x 12 mm) for fabrication of hardness specimen. FIG 5
3) Universal testing machine (Instron 3365, Instron Corp., Canton, Mass).
4) Shore A Durometer.
5) Micro motor hand piece (Marathon), 240 Grit silicone carbide paper.
6) Unident™ Acryliser (Unident Instrument India PVT Ltd.)
7) Hydraulic Press (Sirio P4000).
8) Glass slab ,mixing pad, spatula Scissors and B P knife.
9) Auto mix gun.
10) Silicone acrylic mixing jar.
11) Dental clamp.

FOR TENSILE BOND STRENGTH
In this study, 120 specimens of each liners (60 specimens of UFI gel P and 60 specimens GC reline soft) were prepared. Tensile bond strength testing was done in Universal Testing machine (Instron model no: 3365)

PREPARATION OF TENSILE BOND STRENGTH
A) PREPARATION OF STANDARDIZED BRASS FLASK
For conducting this study, acrylic blocks of dimension 40 x 10 x 10mm (L x W x H) were to be prepared. The dimension of the acrylic blocks were standardized by using a brass mould. This brass mould which comprises of three pieces, upper, middle and lower parts. These three parts can be assembled and secured together using four screws on each corner of the brass mould . Middle part which contained mould space of 83mm x 10mm x 10 mm (Lx WxH). This brass spacer divides mould space into two equal spaces of 40 x10 x10mm dimension.. This customized mould helped in fabrication of 2 heat cured acrylic block at a time.

B) PREPARATION OF HEAT CURED ACRYLIC BLOCK
Study requires 240 heat cured acrylic blocks of dimension 40 x 10 x 10mm. Preparation of acrylic blocks was done using a standardized brass mould. Acrylic resin (DPI Heat Cure™ pink LTD,) was mixed acrylic mixing jar and packed into mould space Curing was done at 74°c for 2 hours followed by 100°c for 1 hour. (FIG 6)

C) PREPARATION OF SOFT LINER SPECIMEN
The brass mould is now set to receive the soft liners. The acrylic blocks are positioned in the mould space, the brass spacer of dimension 3x14x10 mm is now removed. The area to be bonded was thoroughly air dried for 1 minute. Adhesive was applied to the prepared surfaces of two acrylic block and wait for 3 minute. Soft liners were manipulated according to manufacturer’s instruction, it was packed into the standardized 3mm x 14mm x 10mm space between the two acrylic blocks. The upper part of flask was placed and tightened with screws. Flask was left for 10 minutes in room temperature for curing. The specimen were retrieved and the excess liner material from either side was removed using B P knife to have a final specimen with liner size of 3x10x10 between two acrylic blocks of 40x10x10mm (FIG 7).

I. PREPARATION OF UFI GEL PTM LINER SPECIMEN
UFI GEL PTM adhesive was applied to the surface .UFI Gel PTM™ base and catalyst were dispensed in ratio 1: 1 from the tubes and mixed within 30 seconds to a homogenous and bubble free consistency and it was packed into the space between the acrylic blocks . In total 60 UFI Gel PTM liner specimen were prepared in above manner.

II. PREPARATION OF GC RELINE SOFTTM LINER SPECIMEN
GC RELINETM PRIMER was applied to the surface with a clean dry brush no.7 supplied by the manufacturer .GC RELINETM SOFT liner material was dispensed from the
cartridge into space between the acrylic blocks. In total 60 GC RELINET™ SOFT liner specimen were prepared in the above mentioned manner (FIG 8).

III PREPARATION OF DENTURE CLEANSER SOLUTIONS

Three rectangular containers are taken with 200 ml of water. Fresh solutions of cleanser were prepared adding 1 tablet of Clinsodent® in one container and 1 Secure® tablet in second container. Water in the third as control. The solutions on all the three containers were changed daily for a period of 180 days. (FIG 9)

DESIGNATION AND DISTRIBUTION OF TENSILE BOND STRENGTH SPECIMEN

Group IA1: 10 samples with Ufi Gel P™ liner were selected and immersed in distilled water for a period of 1 day.

Group IA2: 10 samples with Ufi Gel P™ liner were selected and immersed in distilled water for a period of 180 day.

Group IB1: 10 samples with Ufi Gel P™ liner were selected and immersed in Clinsodent® denture cleanser solution for a period of 1 day.

Group IB2: 10 samples with Ufi Gel PTM liner were selected and immersed in Clinsodent® denture cleanser solution for a period of 180 day.

Group IC1: 10 samples with Ufi Gel PTM liner were selected and immersed in Secure® denture cleanser solution for a period of 1 day.

Group IC2: 10 samples with Ufi Gel PTM liner were selected and immersed in Secure® denture cleanser solution for a period of 180 day.

Group IIA1: 10 samples with GC RELINETM SOFT liner were selected and immersed in distilled water for a period of 1 day.

Group IIA2: 10 samples with GC RELINETM SOFT liner were selected and immersed in distilled water for a period of 180 day.

Group IIB1: 10 samples with GC RELINETM SOFT liner were selected and immersed in Clinsodent® denture cleanser solution for a period of 1 day.

Group IIB2: 10 samples with GC RELINETM SOFT liner were selected and immersed in Clinsodent® denture cleanser solution for a period of 180 day.

Group ICC1: 10 samples with GC RELINETM SOFT liner were selected and immersed in Secure® denture cleanser solution for a period of 1 day.

Group ICC2: 10 samples with GC RELINETM SOFT liner were selected and immersed in Secure® denture cleanser solution for a period of 180 day.

a) EVALUATION OF TENSILE BOND STRENGTH

Universal Testing machine (Instron model no: 3365) is used for testing tensile bond strength. The samples were gripped vertically and firmly between upper and lower cross head jaws of the machine. The tensile force was applied gradually at a cross speed of 2 mm / minute until complete debonding of liner occurred and values are noted. All the samples in each group are tested similarly. (FIG 10)

Tensile bond strength was calculated in Mega Pascal (MPa) by following formula

\[
\text{Tensile bond strength} = \frac{\text{Maximum load (N)}}{\text{Cross Sectional Area (mm²)}}
\]

The difference in the bond strength of each resilient liner material were determined for the 2 test periods and were evaluated statistically using student t test, one way ANOVA and post HOC test.

FOR HARDNESS TESTING

120 cylindrical specimen of both the liner (60 specimen of UFI gel P and 60 specimen GC reline soft) were prepared with dimension of 20mm diameter and 12mm height in a standardized mould to evaluate the effect of denture cleanser on the hardness. Hardness testing was done in Shore A durometer.

PREPARATION OF HARDNESS SPECIMEN

A) PREPARATION OF STANDARDIZED BRASS MOULD

Total of 120 cylindrical specimen of soft liner (60 samples of Ufi Gel P™ & 60 samples of GC RELINE SOFT™) were made of dimension 20mm in diameter and 12mm in height (according to ASTM:D 2240-64T) with the custom made standardized brass mould.

B) PREPARATION OF SOT LINER SPECIMEN

Total of 120 cylindrical specimens (20mm x 12mm) were prepared with this brass mould. Middle part of the mould was placed on the base of the brass flask. Soft liner were manipulated according to manufacturer’s instruction and packed into the mould space. Then the mould was covered with top portion of flask and tightened the screw. Flask was left 10 minutes at room temperature for complete curing. Once the material was set. Specimens (20mm x 12mm) were removed from the mould and excess was trimmed using BP blade. (FIG 11)

PREPARATION OF UFI GEL P™ & GC RELINE SOFT LINTER SPECIMEN

Ufi Gel PTM & GC RELINE SOFT liner material were manipulated according to manufacturer’s instruction and packed into the standardized brass mould. Care should taken to avoid the air bubbles and in above manner total of 60 cylindrical UFI GEL P & 60 GC RELINE SOFT liner specimen of dimension (20 x12mm) were prepared.

DESIGNATION AND DISTRIBUTION OF HARDNESS SPECIMEN (FIG12)

Group IA1: 10 samples with Ufi Gel PTM liner were selected and immersed in distilled water for a period of 1 day.

Group IA2: 10 samples with Ufi Gel PTM liner were selected and immersed in distilled water for a period of 180 day.

Group IB1: 10 samples with Ufi Gel PTM liner were selected and immersed in Clinsodent® denture cleanser solution for a period of 1 day.
Group IB2: 10 samples with Ufi Gel PTM liner were selected and immersed in Clinsodent® denture cleanser solution for a period of 180 day.

Group IC1: 10 samples with Ufi Gel PTM liner were selected and immersed in Secure® denture cleanser solution for a period of 1 day.

Group IC2: 10 samples with Ufi Gel PTM liner were selected and immersed in Secure® denture cleanser solution for a period of 180 day.

Group IIA1: 10 samples with GC RELINETM SOFT liner were selected and immersed in distilled water for a period of 1 day.

Group IIA2: 10 samples with GC RELINETM SOFT liner were selected and immersed in distilled water for a period of 180 day.

Group IIB1: 10 samples with GC RELINETM SOFT liner were selected and immersed in Clinsodent® denture cleanser solution for a period of 1 day.

Group IIB2: 10 samples with GC RELINETM SOFT liner were selected and immersed in Clinsodent® denture cleanser solution for a period of 180 days.

Group IIC1: 10 samples with GC RELINETM SOFT liner were selected and immersed in Secure® denture cleanser solution for a period of 1 day.

Group IIC2: 10 samples with GC RELINETM SOFT liner were selected and immersed in Secure® denture cleanser solution for a period of 180 day.

b) EVALUATION OF HARDNESS

Specimens were prepared for hardness test using the above mentioned method. Hardness of all the specimens (n=10) in each group were measured using Shore A Durometer which was calibrated according to AS™ D2240, and recorded in shore units. The instrument was held in a vertical position and pressure applied until the foot of the instrument touched the specimen surface. Five readings were taken on each specimen and averaged. All the readings were taken 5 second after firm contact was achieved. These values were statistically analyzed using paired student t test, one way Anova and Post Hoc test. (FIG 13)

LEGENDS:

- FIGURE 1: Ufi Gel P™
- FIGURE 2: GC Reline™ soft liner
- FIGURE 3: Clinsodent® & Secure Denture cleanser tablet
- FIGURE 4: Standardized 3 piece brass mould for tensile strength specimen
- FIGURE 5: Standardized 3 piece brass mould for hardness specimen
FIGURE 6: After curing brass mould with heat cure blocks were opened.

FIGURE 7: Liner material packed into space between the acrylic blocks.

FIGURE 8: Ufi Gel P & GC RELINE SOFT liner ready for testing tensile bond strength.

FIGURE 9: Three storage medium. (water, clinsodent, secure)

FIGURE 10: Samples assembled on instron Universal testing machine.

FIGURE 11: Liner material injected into mould space.

FIGURE 12: Representation of Ufi GEL P & GC RELINE SOFT liner hardness specimen.

FIGURE 13: Testing of GC RELINE SOFT hardens specimen.

TABLE 1: Tensile bond strength values of UFI GEL P TM (GROUP I) after immersion in Water, Clinsodent®, Secure® for a period of 1 day and 180 days.
TABLE 2: Tensile bond strength value of GC RELINE SOFTTM (GROUP II) after immersion in Water, Clinsoindent®, Secure® for a period of 1 day and 180 days

<table>
<thead>
<tr>
<th>SL No</th>
<th>WATER</th>
<th>CLINSOIDENT</th>
<th>SECURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EA* 1 Day (MPa)</td>
<td>EA* 100 Days (MPa)</td>
<td>BB* 1 Day (MPa)</td>
</tr>
<tr>
<td>1</td>
<td>0.73</td>
<td>0.70</td>
<td>0.72</td>
</tr>
<tr>
<td>2</td>
<td>0.72</td>
<td>0.70</td>
<td>0.71</td>
</tr>
<tr>
<td>3</td>
<td>0.71</td>
<td>0.69</td>
<td>0.70</td>
</tr>
<tr>
<td>4</td>
<td>0.70</td>
<td>0.69</td>
<td>0.70</td>
</tr>
<tr>
<td>5</td>
<td>0.69</td>
<td>0.68</td>
<td>0.69</td>
</tr>
<tr>
<td>6</td>
<td>0.68</td>
<td>0.67</td>
<td>0.68</td>
</tr>
<tr>
<td>7</td>
<td>0.67</td>
<td>0.66</td>
<td>0.66</td>
</tr>
<tr>
<td>8</td>
<td>0.66</td>
<td>0.65</td>
<td>0.66</td>
</tr>
<tr>
<td>9</td>
<td>0.65</td>
<td>0.64</td>
<td>0.65</td>
</tr>
<tr>
<td>Mean</td>
<td>0.69</td>
<td>0.67</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Graph 1: Comparison Of Group I And Group II tensile Bond Strength

Graph 2: Comparison of Group I And Group II Hardness

DISCUSSION
Resilient liner are indicated in clinical conditions like patients with bony undercuts, bruxism, congenital or acquired oral defects requiring prosthesis, relief for tori / exostoses, persistent denture sore mouth, radiation therapy, dentures opposing natural dentition and implant supported prosthesis during healing period.

One of the common problems found in the use of denture liners is the adhesion failure between the liner and denture base and most of the liners are not stable in a moist environment of oral cavity. Factors that affect the bond between lining materials and denture bases, includes aging in water, use of a primer with lining material and nature of the material base. Bond strength and Hardness were the most challenging factors in the use of denture liners.

Tensile bond strength is the maximum stress that the material will withstand before rupture. The tensile bond strength of soft liners were tested in a universal testing machine (Instron model No: 3365). Carlos Nelson Elias (2007) used it same instrument to find the tensile bond strength of soft liners. Therefore the bond strength of silicone resilient liners depends on tensile strength of the materials and adhesive used.

The bond strength values were found to be reduced for Ufiigel P and GC relines soft liner materials stored in water (control). Clinsodent and Secure subgroups over a period of 180 days. In control group shows a slight reduction in bond strength .Clinsodent group also shows a slight reduction in tensile bond strength but in secure group shows significant reduction in tensile bond strength. This difference between immersion groups may be due to the different chemical
composition of two denture cleansers. These results are in accordance with the Khan et al who suggested that water storage reduced resilient liner bond strength. This decrease in bond strength may result from the swelling and stress formation at the bond interface or from a change in the viscoelastic properties of the liner, rendering the material stiffer and able to transmit external loads to the bond site. The results agreed with Polyzois(1992) who reported that water storage reduced the bond strength of resilient liner but contradict the findings of Emmer et al (1995). Dootz et al (1993), Craig and Gibbons,(1961) who reported that tensile strength of resilient lining materials increased after storage in water. However, a direct comparison of these studies cannot be made because of their variation of mechanical tests and research protocols used. Nikawa et al (2003) and Jin et al (2003) affirmed that not only the active component, but also other components of the cleansing chemical agent as well as the pH can cause damage to the material. According to Jagger and Harrison (1995), the effervescence hygiene agents have a chemical and a mechanical cleaning action, resulting in the production of bubbles created by oxygen release during the reaction, which could affect the bond strength.

The variation in tensile bond strength between clinsodent and secure group may be due to the higher ionic concentration of sodium and potassium present in secure denture cleanser solution. Secure denture cleanser tablet which contain potassium mono persulphate which was a strong oxidizing agent. These results are in accordance with the Kazanj and Watkinson (1988). suggested that materials can absorb water or lose soluble components, depending on their composition and the solution in which they are immersed. It is likely that the higher ionic concentration potassium and sodium of denture cleanser compared to water, led to a higher release of soluble components. The difference in bond strength of (group I) Ufi gel P and (group II) GC reline Soft may be due to the difference in chemical constituents of the two materials used in the study. The filler content may be the reason for the difference in tensile bond strength of the two materials (Craig and Gibbons, 1961). This result is in accordance with Y. ABE et al (2009). In a study done on viscoelastic properties of poly vinyl siloxane denture lining materials reported that the viscoelastic properties of the tested materials appear to be influenced by different compositional parameters such as filler fraction and it was noted that viscoelastic properties can marginally affect the bond strength.

F. McCabe et al in a study done on the GC reline soft, GC reline Extra soft and GC reline ultra soft on the adhesive bond strength and compliance, had reported that the filler content of GC reline soft, GC reline Extrasoft and GC reline Ultrasoft were 37%, 30%, 18%, respectively, which is higher than Ufi gel P. (23) Student t test is used to compare between group I (Ufi gel P) and group II (GC reline soft) hardness specimens, Ufi gel P specimen showed lower shore A hardness value (32.3, 31.5, 51.6 shore A) compared to GC reline soft (49.8, 51.6, 79.3 shore A) in each storage medium (Water, Clinsodent, Secure) respectively over a period of 180 days. Group II (GC reline soft) shows significant increase in hardness value compared to group I (Ufi gel P). Shore A hardness values of all the resilient liners were higher over a period of 180 day immersion of immersion. The results of the current study are in agreement with C. nay Seta l (1 9 9 9) (2 4) a n d W a g n e r W C e t a l (1 9 9 9), who reported that water storage increased resilient liner hardness In acrylic resin based products and silicone based products.. Results of this study supported by Mese and Guzel (26) who evaluated the effect of storage duration on the hardness and tensile bond strength of 2 acrylic based and 2 silicone based resilient liners. They concluded that after 6 months hardness value of all resilient liners evaluated were higher with increased duration of immersion. At 180 days. Group I and group II specimens in secure solution shows a significant increase in the shore A hardness compared to first day. Secure denture cleanser solution contain potassium mono persulphate and sodium bicarbonate in addition to sodium peroxide which contribute to the higher ionic concentration in solution which may alter the surface properties of silicone liner. This result in accordance with the study of Kazanj et al.(1988) stated that soft lining material can absorb water or lose soluble components based on their structure and the chemical solution in which they are soaked. The
authors believe that the higher ionic concentration of
denture cleanser such as Potassium and Sodium resulted
in a higher release of soluble constituents when these
cleansers are compared with water Pavan et al 2007 [27]
These authors observed an increase in the hardness of
resilient materials immersed in cleaning products. Botega
et al.[28] on the other hand, demonstrated a decrease in the
hardness of the tested silicon based liners after the
treatment with differen t dentu re h ygi en e solutions
While in control and clinsodent subgroup there is a mild
increase in the hardness.

GC reline soft shows an significant increase in hardness
because of high concentration of filler content (37%).
The mechanical properties of silicone materials without
fillers are generally insufficient for most applications.
Increases in hardness and strength by the formation of
bonds between the filler and the silicone polymer (29)
Water absorbed into the liner and act as a “filler” by
stressing the surrounding polymer matrix and, as a result,
stiffening of the material occurs (30) with the largest
changes in the viscoelastic properties of silicones after
60 days of wet storage. [24]

All the specimen tested in the study showed an increase
in surface hardness with the time and decrease in tensile
bond strength .However, significant difference in bond
strength and hardness was observed in secure denture
cleanser. Comparatively clinsodent proved to be a better
cleansing solution as the specimens stored in this did not
have significant changes in the mechanical properties.
Overall results indicated that U fi gel PTM silicone liner
performed significantly better than GC reline soft
resilient liners with minimal changes in mechanical
properties when stored in cleansing solution. The
present study was an in vitro study. The soft denture
liners are meant to function with denture in the oral
cavity. The nutrient rich environment of the oral cavity
does not fully match the in vitro nature of the present
study. Therefore, the behavior of denture lining materials
in this study may only partially predict the clinical
performance. Despite increasing usage of soft r e s i l i e
n t liners in prosthetic dentistry and the importance of
cleaning to prevent microbial colonization, factors such as
absorption and solubility, roughness, bond strength,
color stability and viscoelastic properties need to be
further investigated to define the best cleansing
procedure for these materials.

The following conclusions were drawn from the present
study.
1. Ufi gel PTM was proved to be a better material than
GC reline softTM liner with less significant
variations in tensile bond strength and hardness
when stored in cleansers for 180 days
2. Soft liners stored in cleansing solutions and water
did not show much significant variation in
mechanical property. Hence it is advisable to use
cleansers for better anti microbial property.

3. Soft liners stored in Clinsodent® showed minimal
variation in mechanical property compared to
secure.
4. Secure® denture cleanser solution significantly
effect ed the tensile bond strength and hardness
properties of Ufi gel PTM and GC reline softTM
liner material.
5. Ufi gel PTM liner material showed significantly less
variation in tensile bond strength and hardness for a
period 180 days.
6. GC reline soft TM showed a significant variation in
tensile bond strength and hardness over a period of
180 days.

SUMMARY

This study was conducted to evaluate and compare the
effect of denture cleansers on tensile bond strength and
hardness of two silicone based resilient liners on short
and long term storage. Two commercially available Ufi
gel TM P and GC reline soft TM auto polymerizing
silicone liners and two alkaline peroxide type
Clinsodent® and Secure® denture cleansers and Water
(control) were selected as storage medium for first day
and 180 days.

Tensile bond strength and hardness data were analyzed
using One way (ANOVA),student t test and post HOC
test for multi comparison .Result showed that when
comparing Ufi gel P and GC reline soft specimens in
Secure denture cleanser stored for 180 days showed a
signif icant decrease in tensile bond strength and increase
in hardness. In water and Clinsodent storage showed a
less significant variation in tensile bond strength and
hardness of both silicone liners. GC reline soft is a harder
material compared to Ufi Gel P. Ufi gel P showed initial
high bond strength and softness which retained over a
period of 180 day in water and Clinsodent denture
cleansers. Study showed that variation in composition of
denture cleansers and duration which will effect
the properties of resilient liner. Conclusion drawn from
this study showed that Clinsodent denture cleaner with a
main ingredient of alkaline peroxide showed significant
less effect on tensile bond strength and hardness
properties of silicone liners on long term storage. Rather
than using water alone, it is advisable to use alkaline
peroxide which have an inherent antimicrobial property
for cleansing the denture lined with silicone based
resilient liner without effecting the properties.

REFERENCES

1. Kawano F, Kon M, Koran A, Matsumoto N. Shock-
absorbing behavior of four processed soft denture
3. El Hadary A, Drummond J L. Comparative study of
water sorption, solubility, and tensile bond strength
83: 356-61.

